Среднеквадратическое отклонение x. Среднеквадратическое отклонение формулы в excel

Приближенный метод оценки колеблемости вариационного ряда - определение лимита и амплитуды, однако не учитывают значений вариант внутри ряда. Основной общепринятой мерой колеблемости количественного приз­нака в пределах вариационного ряда является среднее квадратичес­кое отклонение (σ - сигма) . Чем больше среднее квадратическое отклонение, тем степень ко­леблемости данного ряда выше.

Методика расчета среднего квадратического отклонения включает следующие этапы:

1. Находят среднюю арифметическую величину (Μ).

2. Определяют отклонения отдельных вариант от средней арифмети­ческой (d=V-M). В медицинской статистике отклонения от средней обозначаются как d (deviate). Сумма всех от­клонений равняется нулю.

3. Возводят каждое отклонение в квадрат d 2 .

4. Перемножают квадраты отклонений на соответствующие частоты d 2 *p.

5. Находят сумму произведений å(d 2 *p)

6. Вычисляют среднее квадратическое отклонение по формуле:

При n больше 30,или при n меньше либо равно 30, где n - число всех вариант.

Значение среднего квадратичного отклонения:

1. Среднее квадратическое отклонение характеризует разброс вариант относительно средней величины (т.е. колеблемость вариационного ряда). Чем больше сигма, тем степень разнообразия данного ряда выше.

2. Среднее квадратичное отклонение используется для сравнительной оценки степени соответствия средней арифметической величины тому вариационному ряду, для которого она вычислена.

Вариации массовых явлений подчиняются закону нормального распределения. Кривая, отображающая это распределение, имеет вид плавной колоколообразной симметричной кривой (кривая Гаусса). Согласно теории вероятности в явлениях, подчиняющихся закону нормального распределения, между значениями средней арифметической и среднего квадратического отклонения существует строгая математическая зависимость. Теоретическое распределение вариант в однородном вариационном ряду подчиняется правилу трех сигм.

Если в системе прямоугольных координат на оси абсцисс отложить значения количественного признака (варианты), а на оси ординат - частоты встречаемости вариант в вариационном ряду, то по сторонам от средней арифметической равномерно располагаются варианты с большими и меньшими значениями.



Установлено, что при нормальном распределении признака:

68,3% значений вариант находится в пределах М±1s

95,5% значений вариант находится в пределах М±2s

99,7% значений вариант находится в пределах М±3s

3. Среднее квадратическое отлонение позволяет установить значения нормы для клинико-биологических показателей. В медицине интервал М±1s обычно принимается за пределы нормы для изучаемого явления. Отклонение оцениваемой величины от средней арифметической больше, чем на 1s указывает на отклонение изучаемого параметра от нормы.

4. В медицине правило трех сигм применяется в педиатрии для индивидуальной оценки уровня физического развития детей (метод сигмальных отклонений), для разработки стандартов детской одежды

5. Среднее квадратическое отклонение необходимо для характеристики степени разнообразия изучаемого признака и вычисления ошибки средней арифметической величины.

Величина среднего квадра­тического отклонения обычно используется для сравнения колеблемости однотипных рядов. Если сравниваются два ряда с разными признаками (рост и масса тела, средняя длительность лечения в стационаре и больничная летальность и т.д.), то непосредственное сопоставление размеров сигм невозможно, т.к. среднеквадратичес­кое отклонение - именованная величина, выраженная в абсолютных числах. В этих случаях применяют коэффициент вариации (Cv) , представляющий собой относительную величину: процентное отноше­ние среднего квадратического отклонения к средней арифметической.

Коэффициент вариации вычисляется по формуле:

Чем выше коэффициент вариации, тем большая изменчивость данно­го ряда. Считают, что коэффициент вариации свыше 30 % свиде­тельствует о качественной неоднородности совокупности.

  • 6. План статистического исследования, его содержание. 7. Программа статистического исследования, ее содержание.
  • 8. Статистическая совокупность, ее групповые свойства, виды. Требования к выборочной совокупности.
  • 25. Статистические таблицы, их виды и требования, предъявляемые к ним.
  • 9. Сбор статистического материала.
  • 10. Основные операции разработки статистического материала.
  • 11. Анализ результатов статистического исследования.
  • 12. Внедрение результатов статистического исследования в практику
  • 13. Абсолютные величины, их применение в здравоохранении.
  • 14. Относительные величины, их применение в анализе деятельности
  • 15. Вариационные ряды, их виды, значение. 16. Величины, характеризующие вариационный ряд.
  • 17. Методы расчета средних величин, значение.
  • 18. Среднее квадратическое отклонение, методика расчета, значение.
  • 19. Ошибка репрезентативности средних величин, методика расчета, значение. 20. Ошибка репрезентативности относительных величин, методика расчета, значение.
  • 21. Оценка достоверности разности статистических величин.
  • 23. Понятие о корреляционном анализе.
  • 24. Графические изображения результатов статистического исследования, виды.
  • 26. Динамические ряды, показатели, вычисление и применение в медицине.
  • 27. Общественное здоровье населения, показатели, значение. 28. Факторы, влияющие на здоровье населения. Формула здоровья.
  • 29. Разделы демографии, её значение для здравоохранения.
  • 30. Статика населения, показатели, их значение. 31. Возрастная структура населения, типы, социальное значение.
  • 33. Динамика населения, виды, показатели, медико-социальное значение.
  • 34. Естественное движение населения, показатели, закономерности, медико-социальное значение.
  • 35. Рождаемость, уровни, методика расчета, анализ и медико-социальные аспекты ее регулирования.
  • 36. Смертность населения, показатели, уровни, методика расчета, анализ и медико-социальное значение.
  • 37. Младенческая смертность, причины, возрастные особенности, методика расчета.
  • 38. Перинатальная смертность, методика расчета, уровни, структура, причины, медико-социальное значение.
  • 40. Воспроизводство населения, типы, показатели, методика расчета.
  • 42. Заболеваемость, показатели, структура, методы изучения.
  • 43. Международная статистическая классификация болезней и проблем, связанных со здоровьем, значение, принципы построения.
  • 3) Заболевания у госпитализированных больных
  • 4) Заболевания с временной утратой трудоспособности (см. Вопрос 58).
  • 45. Заболеваемость с временной утратой трудоспособности, причины, показатели. 46. Изучение заболеваемости с временной утратой трудоспособности.Полицевой учет заболеваемости.
  • 47. Профилактические медицинские осмотры, виды, порядок проведения, документы.
  • 48. Изучение заболеваемости по обращаемости за медицинской помощью.
  • 51. Физическое развитие, методика изучения, медико-социальное значение.
  • 52. Инвалидность населения, причины, показатели, медико-социальное значение. 102. Инвалидность, порядок установления и документы оформления.
  • 54. Болезни системы кровообращения, их медико-социальная значимость и обусловленность. Организация кардиологической службы. Первичная профилактика.
  • 55. Новообразования, их медико-социальная значимость и обусловленность. Организация онкологической службы. Первичная профилактика.
  • 59. Психические расстройства, их медико-социальная значимость и обусловленность. Организация психоневрологической помощи. Первичная профилактика.
  • 60. Алкоголизм и наркомания, их медико-социальная значимость и обусловленность. Организация наркологической помощи. Первичнаяпрофилактика.
  • 61. Принципы государственной политики Республики Беларусь в области здравоохранения.
  • 62. Виды, формы, условия медицинской помощи.
  • 63. Первичная медицинская помощь, принципы, организационная структура, значение, перспективы развития.
  • 65. Регистратура, ее функции. Формы записи на прием к врачу.
  • 68. Врач общей практики, функции, содержание работы, особенности втэ.
  • 76. Приемное отделение, задачи, организационная структура.
  • 80. Стационарзамещающие технологии, виды, принципы работы, значение
  • 103. Медико-реабилитационная экспертная комиссия, ее состав и функции.
  • 104. Медицинская, социальная и трудовая реабилитация инвалидов.
  • II этап – территориальное медицинское объединение (тмо).
  • III этап – областная больница и медицинские учреждения области.
  • 109. Профилактика – важнейший принцип здравоохранения, ее формы и уровни.
  • 113. Здоровый образ жизни, его компоненты, медико-социальное значение. 114. Формирование здорового образа жизни, направления.
  • 115. Методы и средства гигиенического воспитания и обучения населения. 116. Характеристика методов гигиенического воспитания, преимущества и недостатки.
  • 117. Охрана материнства и детства, ее социальное значение, государственные мероприятия в рб.
  • 122. Детская больница, особенности госпитализации, структуры и организация работы. 123. Анализ деятельности детской больницы.
  • 124. Женская консультация, ее структура, задачи и организация работы. 125. Основная медицинская документация и показатели работы женской консультации.
  • 126. Родильный дом, структура, организация приема беременных, рожениц и родильниц. 127. Основная медицинская документация и показатели работы родильного дома.
  • 18. Среднее квадратическое отклонение, методика расчета, значение.

    Приближенный метод оценки колеблемости вариационного ряда - определение лимита и амплитуды, однако не учитывают значений вариант внутри ряда. Основной общепринятой мерой колеблемости количественного приз­нака в пределах вариационного ряда является среднее квадратичес­кое отклонение (σ - сигма) . Чем больше среднее квадратическое отклонение, тем степень ко­леблемости данного ряда выше.

    Методика расчета среднего квадратического отклонения включает следующие этапы:

    1. Находят среднюю арифметическую величину (Μ).

    2. Определяют отклонения отдельных вариант от средней арифмети­ческой (d=V-M). В медицинской статистике отклонения от средней обозначаются как d (deviate). Сумма всех от­клонений равняется нулю.

    3. Возводят каждое отклонение в квадрат d 2 .

    4. Перемножают квадраты отклонений на соответствующие частоты d 2 *p.

    5. Находят сумму произведений (d 2 *p)

    6. Вычисляют среднее квадратическое отклонение по формуле:

    при n больше 30, или при n меньше либо равно 30, где n - число всех вариант.

    Значение среднего квадратичного отклонения:

    1. Среднее квадратическое отклонение характеризует разброс вариант относительно средней величины (т.е. колеблемость вариационного ряда). Чем больше сигма, тем степень разнообразия данного ряда выше.

    2. Среднее квадратичное отклонение используется для сравнительной оценки степени соответствия средней арифметической величины тому вариационному ряду, для которого она вычислена.

    Вариации массовых явлений подчиняются закону нормального распределения. Кривая, отображающая это распределение, имеет вид плавной колоколообразной симметричной кривой (кривая Гаусса). Согласно теории вероятности в явлениях, подчиняющихся закону нормального распределения, между значениями средней арифметической и среднего квадратического отклонения существует строгая математическая зависимость. Теоретическое распределение вариант в однородном вариационном ряду подчиняется правилу трех сигм.

    Если в системе прямоугольных координат на оси абсцисс отложить значения количественного признака (варианты), а на оси ординат - частоты встречаемости вариант в вариационном ряду, то по сторонам от средней арифметической равномерно располагаются варианты с большими и меньшими значениями.

    Установлено, что при нормальном распределении признака:

    68,3% значений вариант находится в пределах М1

    95,5% значений вариант находится в пределах М2

    99,7% значений вариант находится в пределах М3

    3. Среднее квадратическое отлонение позволяет установить значения нормы для клинико-биологических показателей. В медицине интервал М1 обычно принимается за пределы нормы для изучаемого явления. Отклонение оцениваемой величины от средней арифметической больше, чем на 1 указывает на отклонение изучаемого параметра от нормы.

    4. В медицине правило трех сигм применяется в педиатрии для индивидуальной оценки уровня физического развития детей (метод сигмальных отклонений), для разработки стандартов детской одежды

    5. Среднее квадратическое отклонение необходимо для характеристики степени разнообразия изучаемого признака и вычисления ошибки средней арифметической величины.

    Величина среднего квадра­тического отклонения обычно используется для сравнения колеблемости однотипных рядов. Если сравниваются два ряда с разными признаками (рост и масса тела, средняя длительность лечения в стационаре и больничная летальность и т.д.), то непосредственное сопоставление размеров сигм невозможно, т.к. среднеквадратичес­кое отклонение - именованная величина, выраженная в абсолютных числах. В этих случаях применяют коэффициент вариации (Cv) , представляющий собой относительную величину: процентное отноше­ние среднего квадратического отклонения к средней арифметической.

    Коэффициент вариации вычисляется по формуле:

    Чем выше коэффициент вариации, тем большая изменчивость данно­го ряда. Считают, что коэффициент вариации свыше 30 % свиде­тельствует о качественной неоднородности совокупности.

    "

    Х i - случайные (текущие) величины;

    среднее значение случайных величин по выборке, рассчитывается по формуле:

    Итак, дисперсия - это средний квадрат отклонений . То есть вначале рассчитывается среднее значение, затем берется разница между каждым исходным и средним значением, возводится в квадрат , складывается и затем делится на количество значений в данной совокупности.

    Разница между отдельным значением и средней отражает меру отклонения. В квадрат возводится для того, чтобы все отклонения стали исключительно положительными числами и чтобы избежать взаимоуничтожения положительных и отрицательных отклонений при их суммировании. Затем, имея квадраты отклонений, мы просто рассчитываем среднюю арифметическую.

    Разгадка магического слова «дисперсия» заключается всего в этих трех словах: средний – квадрат – отклонений.

    Среднее квадратичное отклонение (СКО)

    Извлекая из дисперсии квадратный корень, получаем, так называемое «среднеквадратичное отклонение». Встречаются названия «стандартное отклонение» или «сигма» (от названия греческой буквыσ .). Формула среднего квадратичного отклонения имеет вид:

    Итак, дисперсия – это сигма в квадрате, или – среднее квадратичное отклонение в квадрате.

    Среднеквадратичное отклонение, очевидно, также характеризует меру рассеивания данных, но теперь (в отличие от дисперсии) его можно сравнивать с исходными данными, так как единицы измерения у них одинаковые (это явствует из формулы расчета). Размах вариации – это разница между крайними значениями. Среднеквадратичное отклонение, как мера неопределенности, также участвует во многих статистических расчетах. С ее помощью устанавливают степень точности различных оценок и прогнозов. Если вариация очень большая, то стандартное отклонение тоже получится большим, следовательно, и прогноз будет неточным, что выразится, к примеру, в очень широких доверительных интервалах.

    Поэтому в методах статистической обработки данных в оценках объектов недвижимости в зависимости от необходимой точности поставленной задачи используют правило двух или трех сигм.

    Для сравнения правила двух сигм и правила трех сигм используем формулу Лапласа:

    Ф - Ф ,

    где Ф(x) – функция Лапласа;



    Минимальное значение

    β = максимальное значение

    s = значение сигмы (среднее квадратичное отклонение)

    a = среднее значение

    В этом случае используется частный вид формулы Лапласа когда границы α и β значений случайной величины X равно отстоят от центра распределения a = M(X) на некоторую величину d: a = a-d, b = a+d. Или (1) Формула (1) определяет вероятность заданного отклонения d случайной величины X с нормальным законом распределения от ее математического ожидания М(X) = a. Если в формуле (1) принять последовательно d = 2s и d = 3s, то получим: (2), (3).

    Правило двух сигм

    Почти достоверно (с доверительной вероятностью 0,954) можно утверждать, что все значения случайной величины X с нормальным законом распределения отклоняются от ее математического ожидания M(X) = a на величину, не большую 2s (двух средних квадратических отклонений). Доверительной вероятностью (Pд) называют вероятность событий, которые условно принимаются за достоверные (их вероятность близка к 1).

    Проиллюстрируем правило двух сигм геометрически. На рис. 6 изображена кривая Гаусса с центром распределения а. Площадь, ограниченная всей кривой и осью Оx, равна 1 (100%), а площадь криволинейной трапеции между абсциссами а–2s и а+2s, согласно правилу двух сигм, равна 0,954 (95,4% от всей площади). Площадь заштрихованных участков равна 1-0,954 = 0,046 (»5% от всей площади). Эти участки называют критической областью значений случайной величины. Значения случайной величины, попадающие в критическую область, маловероятны и на практике условно принимаются за невозможные.

    Вероятность условно невозможных значений называют уровнем значимости случайной величины. Уровень значимости связан с доверительной вероятностью формулой:

    где q – уровень значимости, выраженный в процентах.

    Правило трех сигм

    При решении вопросов, требующих большей надежности, когда доверительную вероятность (Pд) принимают равной 0,997 (точнее - 0,9973), вместо правила двух сигм, согласно формуле (3), используют правило трех сигм.



    Согласно правилу трех сигм при доверительной вероятности 0,9973 критической областью будет область значений признака вне интервала (а-3s, а+3s). Уровень значимости составляет 0,27%.

    Другими словами, вероятность того, что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна 0,0027=1-0,9973. Это означает, что лишь в 0,27% случаев так может произойти. Такие события, исходя из принципа невозможности маловероятных событий, можно считать практически невозможными. Т.е. выборка высокоточная.

    В этом и состоит сущность правила трех сигм:

    Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения (СКО).

    На практике правило трех сигм применяют так: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведенном правиле, выполняется, то есть основание предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.

    Уровень значимости принимают в зависимости от дозволенной степени риска и поставленной задачи. Для оценки недвижимости обычно принимается менее точная выборка, следуя правилу двух сигм.

    В данной статье я расскажу о том, как найти среднеквадратическое отклонение . Этот материал крайне важен для полноценного понимания математики, поэтому репетитор по математике должен посвятить его изучению отдельный урок или даже несколько. В этой статье вы найдёте ссылку на подробный и понятный видеоурок, в котором рассказано о том, что такое среднеквадратическое отклонение и как его найти.

    Среднеквадратическое отклонение дает возможность оценить разброс значений, полученных в результате измерения какого-то параметра. Обозначается символом (греческая буква «сигма»).

    Формула для расчета довольно проста. Чтобы найти среднеквадратическое отклонение, нужно взять квадратный корень из дисперсии. Так что теперь вы должны спросить: “А что же такое дисперсия?”

    Что такое дисперсия

    Определение дисперсии звучит так. Дисперсия — это среднее арифметическое от квадратов отклонений значений от среднего.

    Чтобы найти дисперсию последовательно проведите следующие вычисления:

    • Определите среднее (простое среднее арифметическое ряда значений).
    • Затем от каждого из значений отнимите среднее и возведите полученную разность в квадрат (получили квадрат разности ).
    • Следующим шагом будет вычисление среднего арифметического полученных квадратов разностей (Почему именно квадратов вы сможете узнать ниже).

    Рассмотрим на примере. Допустим, вы с друзьями решили измерить рост ваших собак (в миллиметрах). В результате измерений вы получили следующие данные измерений роста (в холке): 600 мм, 470 мм, 170 мм, 430 мм и 300 мм.

    Вычислим среднее значение, дисперсию и среднеквадратическое отклонение.

    Сперва найдём среднее значение . Как вы уже знаете, для этого нужно сложить все измеренные значения и поделить на количество измерений. Ход вычислений:

    Среднее мм.

    Итак, среднее (среднеарифметическое) составляет 394 мм.

    Теперь нужно определить отклонение роста каждой из собак от среднего :

    Наконец, чтобы вычислить дисперсию , каждую из полученных разностей возводим в квадрат, а затем находим среднее арифметическое от полученных результатов:

    Дисперсия мм 2 .

    Таким образом, дисперсия составляет 21704 мм 2 .

    Как найти среднеквадратическое отклонение

    Так как же теперь вычислить среднеквадратическое отклонение, зная дисперсию? Как мы помним, взять из нее квадратный корень. То есть среднеквадратическое отклонение равно:

    Мм (округлено до ближайшего целого значения в мм).

    Применив данный метод, мы выяснили, что некоторые собаки (например, ротвейлеры) – очень большие собаки. Но есть и очень маленькие собаки (например, таксы, только говорить им этого не стоит).

    Самое интересное, что среднеквадратическое отклонение несет в себе полезную информацию. Теперь мы можем показать, какие из полученных результатов измерения роста находятся в пределах интервала, который мы получим, если отложим от среднего (в обе стороны от него) среднеквадратическое отклонение.

    То есть с помощью среднеквадратического отклонения мы получаем “стандартный” метод, который позволяет узнать, какое из значений является нормальным (среднестатистическим), а какое экстраординарно большим или, наоборот, малым.

    Что такое стандартное отклонение

    Но… все будет немного иначе, если мы будем анализировать выборку данных. В нашем примере мы рассматривали генеральную совокупность. То есть наши 5 собак были единственными в мире собаками, которые нас интересовали.

    Но если данные являются выборкой (значениями, которые выбрали из большой генеральной совокупности), тогда вычисления нужно вести иначе.

    Если есть значений, то:

    Все остальные расчеты производятся аналогично, в том числе и определение среднего.

    Например, если наших пять собак – только выборка из генеральной совокупности собак (всех собак на планете), мы должны делить на 4, а не на 5, а именно:

    Дисперсия выборки = мм 2 .

    При этом стандартное отклонение по выборке равно мм (округлено до ближайшего целого значения).

    Можно сказать, что мы произвели некоторую “коррекцию” в случае, когда наши значения являются всего лишь небольшой выборкой.

    Примечание. Почему именно квадраты разностей?

    Но почему при вычислении дисперсии мы берём именно квадраты разностей? Допустим при измерении какого-то параметра, вы получили следующий набор значений: 4; 4; -4; -4. Если мы просто сложим абсолютные отклонения от среднего (разности) между собой … отрицательные значения взаимно уничтожатся с положительными:

    .

    Получается, этот вариант бесполезен. Тогда, может, стоит попробовать абсолютные значения отклонений (то есть модули этих значений)?

    На первый взгляд получается неплохо (полученная величина, кстати, называется средним абсолютным отклонением), но не во всех случаях. Попробуем другой пример. Пусть в результате измерения получился следующий набор значений: 7; 1; -6; -2. Тогда среднее абсолютное отклонение равно:

    Вот это да! Снова получили результат 4, хотя разности имеют гораздо больший разброс.

    А теперь посмотрим, что получится, если возвести разности в квадрат (и взять потом квадратный корень из их суммы).

    Для первого примера получится:

    .

    Для второго примера получится:

    Теперь – совсем другое дело! Среднеквадратическое отклонение получается тем большим, чем больший разброс имеют разности … к чему мы и стремились.

    Фактически в данном методе использована та же идея, что и при вычислении расстояния между точками, только примененная иным способом.

    И с математической точки зрения использование квадратов и квадратных корней дает больше пользы, чем мы могли бы получить на основании абсолютных значений отклонений, благодаря чему среднеквадратическое отклонение применимо и для других математических задач.

    О том, как найти среднеквадратическое отклонение, вам рассказал , Сергей Валерьевич

    Одним из основных инструментов статистического анализа является расчет среднего квадратичного отклонения. Данный показатель позволяет сделать оценку стандартного отклонения по выборке или по генеральной совокупности. Давайте узнаем, как использовать формулу определения среднеквадратичного отклонения в Excel.

    Сразу определим, что же представляет собой среднеквадратичное отклонение и как выглядит его формула. Эта величина является корнем квадратным из среднего арифметического числа квадратов разности всех величин ряда и их среднего арифметического. Существует тождественное наименование данного показателя — стандартное отклонение. Оба названия полностью равнозначны.

    Но, естественно, что в Экселе пользователю не приходится это высчитывать, так как за него все делает программа. Давайте узнаем, как посчитать стандартное отклонение в Excel.

    Расчет в Excel

    Рассчитать указанную величину в Экселе можно с помощью двух специальных функций СТАНДОТКЛОН.В (по выборочной совокупности) и СТАНДОТКЛОН.Г (по генеральной совокупности). Принцип их действия абсолютно одинаков, но вызвать их можно тремя способами, о которых мы поговорим ниже.

    Способ 1: мастер функций


    Способ 2: вкладка «Формулы»


    Способ 3: ручной ввод формулы

    Существует также способ, при котором вообще не нужно будет вызывать окно аргументов. Для этого следует ввести формулу вручную.


    Как видим, механизм расчета среднеквадратичного отклонения в Excel очень простой. Пользователю нужно только ввести числа из совокупности или ссылки на ячейки, которые их содержат. Все расчеты выполняет сама программа. Намного сложнее осознать, что же собой представляет рассчитываемый показатель и как результаты расчета можно применить на практике. Но постижение этого уже относится больше к сфере статистики, чем к обучению работе с программным обеспечением.